# Evaluation of Minimal Residual Disease (MRD) in Relapsed/Refractory Multiple Myeloma (RRMM) Patients Treated With Daratumumab in Combination With Lenalidomide Plus Dexamethasone or Bortezomib Plus Dexamethasone

 <u>Hervé Avet-Loiseau</u>,<sup>1</sup> Tineke Casneuf,<sup>2</sup> Christopher Chiu,<sup>3</sup> Jacob Laubach,<sup>4</sup> Je-Jung Lee,<sup>5</sup> Philippe Moreau,<sup>6</sup> Torben Plesner,<sup>7</sup> Hareth Nahi,<sup>8</sup>
Nushmia Z. Khokhar,<sup>3</sup> Ming Qi,<sup>3</sup> Jordan Schecter,<sup>9</sup> Victoria Carlton,<sup>10</sup> Xiang Qin,<sup>3</sup>
Kevin Liu,<sup>9</sup> Kaida Wu,<sup>3</sup> Sen Hong Zhuang,<sup>9</sup> Tahamtan Ahmadi,<sup>3</sup> A. Kate Sasser,<sup>3</sup> Jesus San-Miguel<sup>11</sup>

<sup>1</sup>Unite de Genomique du Myelome, CHU Rangueil, Toulouse, France; <sup>2</sup>Oncology Heme Translational Research Group, Janssen Research & Development, Beerse, Belgium; <sup>3</sup>Janssen Research & Development, LLC, Spring House, PA, USA; <sup>4</sup>Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; <sup>5</sup>Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, South Korea; <sup>6</sup>Hematology, University Hospital Hôtel-Dieu, Nantes, France; <sup>7</sup>Vejle Hospital and University of Southern Denmark, Vejle, Denmark; <sup>8</sup>Karolinska Institute and the Department of Medicine, Division of Hematology, Karolinska University Hospital at Huddinge, Stockholm, Sweden; <sup>9</sup>Janssen Research & Development, LLC, Raritan, NJ, USA; <sup>10</sup>Adaptive Biotechnologies, Seattle, WA, USA; <sup>11</sup>Clínica Universidad de Navarra-CIMA, IDISNA, Pamplona, Spain.

# Daratumumab

- Daratumumab
  - Human monoclonal antibody that targets CD38
  - Direct on-tumor and immunomodulatory mechanisms of action<sup>1-5</sup>
- Daratumumab is approved by the FDA as monotherapy and in combination with standard of care regimens for patients with multiple myeloma (MM) with ≥1 prior line of treatment
- Daratumumab + standard of care regimens
  - Resulted in a >60% reduction in the risk of disease progression or death<sup>6,7</sup>
  - The immunomodulatory effects of daratumumab may drive deep responses



- 2. Overdijk MB, et al. J Immunol. 2016;197(3):807-813.
- 3. de Weers M, et al. J Immunol. 2011;186(3):1840-1848.
- 4. Overdijk MB, et al. *MAbs*. 2015;7(2):311-321.
- 5. Krejcik J, et al. Blood. 2016;128(3):384-394.
- 6. Dimopoulos MA, et al. New Engl J Med. 2016;375(14):1319-1331.
- 7. Palumbo A, et al. New Engl J Med. 2016;375(8):754-766.

<sup>1.</sup> Lammerts van Bueren J, et al. Blood. 2014;124. Abstract 3474.

# **Minimal Residual Disease**

- Minimal residual disease (MRD) is a more sensitive measure of disease burden than traditional definitions of clinical response<sup>1,2</sup>
- MRD-negative status is associated with prolonged progressionfree survival (PFS) and overall survival (OS) in newly diagnosed MM patients<sup>1,2</sup>

- In the future, MRD may be a primary endpoint for clinical studies

- International Myeloma Working Group guidelines recommend an MRD-sensitivity threshold of at least 10<sup>-5</sup> using next-generation sequencing (NGS) or next-generation flow cytometry<sup>3</sup>
- This study is the first evaluation of MRD in relapsed and refractory (RR) MM using a randomized, controlled, and prospective analysis

2. Landgren O, et al. Bone Marrow Transplant. 2016. [Epub ahead of print.]

3. Kumar S, et al. Lancet Oncol. 2016;17(8):e328-e346.

<sup>1.</sup> Munshi NC, et al. JAMA Oncol. 2016. [Epub ahead of print.]

# **POLLUX and CASTOR**

■ Multicenter, randomized (1:1), open-label, active-controlled, phase 3 studies in ≥1 prior line of therapy for MM



DRd, daratumumab, lenalidomide, and dexamethasone; D, daratumumab; IV, intravenous; PD, progressive disease; R, lenalidomide; PO, orally; Rd, lenalidomide and dexamethasone; d, dexamethasone; CR, complete response; DVd, daratumumab, bortezomib, and dexamethasone; V, bortezomib; SC, subcutaneously; Vd, bortezomib and dexamethasone.

# **Updated PFS: POLLUX and CASTOR**



HR, hazard ratio; CI, confidence interval. <sup>a</sup>Kaplan-Meier estimates. Clinical cut-off: June 30, 2016.

### **ClonoSEQ™ MRD Assay**



■ MRD was assessed at suspected CR using bone marrow aspirate samples and evaluated by ClonoSEQ<sup>™</sup> NGS-based assay<sup>a</sup>

MRD, minimal residual disease; BP, base pair; IgH, immunoglobulin H; 1M, 1 million. <sup>a</sup>Version 1.3; Adaptive Biotechnologies.

# **Criteria for MRD Negativity**

- MRD was evaluated at 3 sensitivity thresholds: 10<sup>-4</sup>, 10<sup>-5</sup>, and 10<sup>-6</sup>
- MRD-negativity rate = proportion of patients with negative MRD test results at any time during treatment
- A stringent, unbiased MRD evaluation was applied
  - MRD-negativity counts were evaluated against the intent-to-treat (ITT) population
  - Any patient in the ITT population not determined to be MRD negative was scored as MRD positive
  - A minimum cell input equivalent to the given sensitivity threshold was required to determine MRD negativity
    - i.e., MRD at  $10^{-6}$  required that  $\geq 1$  million cells were evaluated

### Proportion of MRD-negative Patients at 10<sup>-4</sup>, 10<sup>-5</sup>, and 10<sup>-6</sup> Thresholds



 Daratumumab in combination with standard of care significantly improved MRD-negative rates at all thresholds

> \*\*\* *P* <0.0001 \*\* *P* <0.005 \* *P* <0.05

# **MRD Negativity Among Patients With ≥CR**

#### POLLUX

CASTOR





■ Values refer to the percentage of MRD-negative patients among those \*P < 0.005who achieved ≥CR in a given treatment arm

Consistently higher MRD-negative rates in patients with ≥CR treated with a daratumumab-containing regimen



- Rapid accumulation of MRD-negative events in patients treated with daratumumab-containing regimens versus standard of care
- MRD-negative patients continued to accumulate over time in both studies

# Majority of patients maintain MRD negativity; patients will continue to be followed annually

# MRD at 10<sup>-5</sup> by Cytogenetic Risk by NGS



- No high-risk MRD negative patients have progressed or converted to MRD positive
  - High risk = any of t(4;14), t(14;16), del17p
  - Standard risk = conclusive absence of all 3 markers

In high-risk patients, MRD-negative status was achieved only in those treated with daratumumab-containing regimens

P values calculated using likelihood-ratio chi-square test.
<sup>a</sup>Percentage of patients within a given risk group and treatment arm.
<sup>b</sup>Percentage of patients within a given treatment arm within the biomarker-evaluable population.

### **PFS According to MRD Status at 10<sup>-5</sup>**

#### POLLUX

CASTOR



- Lower risk of progression in MRD-negative patients
- PFS benefit in MRD-positive patients who received daratumumabcontaining regimens versus standard of care

# Conclusions

- Daratumumab induced MRD negativity in over 3 times as many patients as standard of care regimens
- Daratumumab led to rapid and durable achievement of MRD negativity
  - Patients continued to achieve MRD negativity over time
- Daratumumab allowed high-risk patients to achieve MRD-negative status
- MRD-negative status was associated with a lower risk of progression
- The high rate of MRD negativity and deep clinical responses induced by daratumumab may lead to improved long-term clinical benefit

The magnitude of daratumumab-induced MRD negativity in the RRMM setting is unprecedented

The potential benefit of MRD-negative status induced by daratumumab in newly diagnosed MM is being explored in ongoing studies

# **Acknowledgments**

#### POLLUX

CASTOR



- Patients who participated in these studies
- Investigators
- Data and safety monitoring committee
- Staff members involved in data collection and analyses
- David Soong, PhD for his work on the NGS cytogenetic analyses
- This study was funded by Janssen Research & Development, LLC
- Medical writing and editorial support were provided by Erica Chevalier-Larsen, PhD, of MedErgy, and were funded by Janssen Global Services, LLC

# Backup

# Baseline Bone Marrow Plasma Cell Percentages From Daratumumab Phase 3 Trials



Baseline bone marrow plasma cell percentages of the 238 samples that successfully calibrated were significantly higher than the 75 samples that failed to calibrate (median of 25% vs 11%, respectively; *P* <0.0001)</p>

# **MRD Threshold**

 Samples with input cell equivalents below the MRD-sensitivity level were considered MRD positive in the analysis of MRD-negativity rate



#### POLLUX

CASTOR



MRD ambiguous MRD negative MRD positive



- Ficoll enrichment removes the granulocytic cell population that makes up 25-50% of nucleated cells in the sample
  - Calculations of MRD-negative rate in Ficoll-enriched samples are more stringent than those using RBC lysates, which would include all of the leukocytes in the sample

# **Assessment by MRD**

 MRD assessment is a more sensitive measure of disease burden than traditional definitions of clinical response<sup>1,2</sup>



# **ORR by Cytogenetic Risk<sup>a</sup>: POLLUX**



# **ORR by Cytogenetic Risk<sup>a</sup>: CASTOR**

