Evaluation of Minimal Residual Disease (MRD) in Relapsed/Refractory Multiple Myeloma (RRMM) Patients Treated With Daratumumab in Combination With Lenalidomide Plus Dexamethasone or Bortezomib Plus Dexamethasone

Hervé Avet-Loiseau,1 Tineke Casneuf,2 Christopher Chiu,3 Jacob Laubach,4 Je-Jung Lee,5 Philippe Moreau,6 Torben Plesner,7 Hareth Nahi,8 Nushmia Z. Khokhar,3 Ming Qi,3 Jordan Schecter,9 Victoria Carlton,10 Xiang Qin,3 Kevin Liu,9 Kaida Wu,3 Sen Hong Zhuang,9 Tahamtan Ahmadi,3 A. Kate Sasser,3 Jesus San-Miguel11

1Unite de Genomique du Myelome, CHU Rangueil, Toulouse, France; 2Oncology Heme Translational Research Group, Janssen Research & Development, Beerse, Belgium; 3Janssen Research & Development, LLC, Spring House, PA, USA; 4Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 5Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, South Korea; 6Hematology, University Hospital Hôtel-Dieu, Nantes, France; 7Vejle Hospital and University of Southern Denmark, Vejle, Denmark; 8Karolinska Institute and the Department of Medicine, Division of Hematology, Karolinska University Hospital at Huddinge, Stockholm, Sweden; 9Janssen Research & Development, LLC, Raritan, NJ, USA; 10Adaptive Biotechnologies, Seattle, WA, USA; 11Clínica Universidad de Navarra-CIMA, IDISNA, Pamplona, Spain.
Daratumumab

- Human monoclonal antibody that targets CD38
- Direct on-tumor and immunomodulatory mechanisms of action

Daratumumab is approved by the FDA as monotherapy and in combination with standard of care regimens for patients with multiple myeloma (MM) with ≥1 prior line of treatment

Daratumumab + standard of care regimens
- Resulted in a >60% reduction in the risk of disease progression or death
- The immunomodulatory effects of daratumumab may drive deep responses

Minimal Residual Disease

- Minimal residual disease (MRD) is a more sensitive measure of disease burden than traditional definitions of clinical response\(^1,2\)
- MRD-negative status is associated with prolonged progression-free survival (PFS) and overall survival (OS) in newly diagnosed MM patients\(^1,2\)
 - In the future, MRD may be a primary endpoint for clinical studies
- International Myeloma Working Group guidelines recommend an MRD-sensitivity threshold of at least \(10^{-5}\) using next-generation sequencing (NGS) or next-generation flow cytometry\(^3\)
- This study is the first evaluation of MRD in relapsed and refractory (RR) MM using a randomized, controlled, and prospective analysis

POLLUX and CASTOR

- Multicenter, randomized (1:1), open-label, active-controlled, phase 3 studies in ≥1 prior line of therapy for MM

POLLUX

- **DRd (n = 286)**
 - D 16 mg/kg IV
 - Every week: Cycles 1-2
 - Every 2 weeks: Cycles 3-6
 - Every 4 weeks until PD
 - R 25 mg PO (similar to Rd alone)
 - d 40 mg

- **Rd (n = 283)**
 - R 25 mg PO
 - Days 1-21 of each cycle until PD
 - d 40 mg weekly until PD

MRD assessments
- At suspected CR
- 3 & 6 months after CR

CASTOR

- **DVd (n = 251)**
 - D 16 mg/kg IV
 - Every week: Cycles 1-3
 - Every 3 weeks: Cycles 4-8
 - Every 4 weeks: Cycles 9+
 - V 1.3 mg/m² SC (similar to Vd alone)
 - d 20 mg

- **Vd (n = 247)**
 - V 1.3 mg/m² SC on Days 1, 4, 8, and 11 for 8 cycles
 - d 20 mg on Days 1, 2, 4, 5, 8, 9, 11, and 12 for 8 cycles

MRD assessments
- At suspected CR
- 6 & 12 months after first study dose

Patient characteristics

- **POLLUX**
 - Median (range) prior lines: 1 (1-11)
 - Prior V: 84%
 - Prior R: 18%

- **CASTOR**
 - Median (range) prior lines: 2 (1-10)
 - Prior V: 66%
 - Prior R: 42%

DRd, daratumumab, lenalidomide, and dexamethasone; D, daratumumab; IV, intravenous; PD, progressive disease; R, lenalidomide; PO, orally; Rd, lenalidomide and dexamethasone; d, dexamethasone; CR, complete response; DVd, daratumumab, bortezomib, and dexamethasone; V, bortezomib; SC, subcutaneously; Vd, bortezomib and dexamethasone.
Updated PFS: POLLUX and CASTOR

POLLUX

Median (range) follow-up: 17.3 (0-24.5) months

- Median PFS
 - DRd: not reached; Rd: 17.5 months
 - HR: 0.37 (95% CI, 0.28-0.50; P <0.0001)

CASTOR

Median (range) follow-up: 13.0 (0-21.3) months

- Median PFS
 - DVd: not reached; Vd: 7.1 months
 - HR: 0.33 (95% CI, 0.26-0.43; P <0.0001)

HR, hazard ratio; CI, confidence interval.
ClonoSEQ™ MRD Assay

Collect fresh or archived non-decalcified bone marrow

Targeted IgH-VDJ sequencing library

Sequence ~1M 100 bp reads

- MRD was assessed at suspected CR using bone marrow aspirate samples and evaluated by ClonoSEQ™ NGS-based assay

MRD, minimal residual disease; BP, base pair; IgH, immunoglobulin H; 1M, 1 million.

aVersion 1.3; Adaptive Biotechnologies.
Criteria for MRD Negativity

- MRD was evaluated at 3 sensitivity thresholds: 10^{-4}, 10^{-5}, and 10^{-6}
- MRD-negativity rate = proportion of patients with negative MRD test results at any time during treatment
- A stringent, unbiased MRD evaluation was applied
 - MRD-negativity counts were evaluated against the intent-to-treat (ITT) population
 - Any patient in the ITT population not determined to be MRD negative was scored as MRD positive
 - A minimum cell input equivalent to the given sensitivity threshold was required to determine MRD negativity
 - i.e., MRD at 10^{-6} required that \geq1 million cells were evaluated
Daratumumab in combination with standard of care significantly improved MRD-negative rates at all thresholds.

P values calculated using likelihood-ratio chi-square test.

*** P <0.0001
** P <0.005
* P <0.05
MRD Negativity Among Patients With ≥CR

- Values refer to the percentage of MRD-negative patients among those who achieved ≥CR in a given treatment arm.

Consistently higher MRD-negative rates in patients with ≥CR treated with a daratumumab-containing regimen

P values calculated using likelihood-ratio chi-square test.
Rapid accumulation of MRD-negative events in patients treated with daratumumab-containing regimens versus standard of care

MRD-negative patients continued to accumulate over time in both studies

Majority of patients maintain MRD negativity; patients will continue to be followed annually

Only 1 MRD-negative sample counted per patient.
No high-risk MRD negative patients have progressed or converted to MRD positive
- High risk = any of t(4;14), t(14;16), del17p
- Standard risk = conclusive absence of all 3 markers

In high-risk patients, MRD-negative status was achieved only in those treated with daratumumab-containing regimens

*P values calculated using likelihood-ratio chi-square test.

<table>
<thead>
<tr>
<th></th>
<th>CASTOR</th>
<th>POLLUX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRD-negative patients per risk group, %a</td>
<td>MRD-negative patients per risk group, %a</td>
</tr>
<tr>
<td>High risk</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Standard risk</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

- DRd (17% high riskb)
- Rd (25% high riskb)
- DVd (26% high riskb)
- Vd (27% high riskb)
- Lower risk of progression in MRD-negative patients
- PFS benefit in MRD-positive patients who received daratumumab-containing regimens versus standard of care
Conclusions

- Daratumumab induced MRD negativity in over 3 times as many patients as standard of care regimens
- Daratumumab led to rapid and durable achievement of MRD negativity
 - Patients continued to achieve MRD negativity over time
- Daratumumab allowed high-risk patients to achieve MRD-negative status
- MRD-negative status was associated with a lower risk of progression
- The high rate of MRD negativity and deep clinical responses induced by daratumumab may lead to improved long-term clinical benefit
The magnitude of daratumumab-induced MRD negativity in the RRMM setting is unprecedented

The potential benefit of MRD-negative status induced by daratumumab in newly diagnosed MM is being explored in ongoing studies
Acknowledgments

- Patients who participated in these studies
- Investigators
- Data and safety monitoring committee
- Staff members involved in data collection and analyses
- David Soong, PhD for his work on the NGS cytogenetic analyses

- This study was funded by Janssen Research & Development, LLC
- Medical writing and editorial support were provided by Erica Chevalier-Larsen, PhD, of MedErgy, and were funded by Janssen Global Services, LLC
Backup
Baseline bone marrow plasma cell percentages of the 238 samples that successfully calibrated were significantly higher than the 75 samples that failed to calibrate (median of 25% vs 11%, respectively; \(P < 0.0001 \))

NDMM, newly diagnosed multiple myeloma.
Calibration using ClonoSEQ™ Version 1.3
MRD Threshold

- Samples with input cell equivalents below the MRD-sensitivity level were considered MRD positive in the analysis of MRD-negativity rate.
Ficoll enrichment removes the granulocytic cell population that makes up 25-50% of nucleated cells in the sample.

- Calculations of MRD-negative rate in Ficoll-enriched samples are more stringent than those using RBC lysates, which would include all of the leukocytes in the sample.
MRD assessment is a more sensitive measure of disease burden than traditional definitions of clinical response1,2

ORR by Cytogenetic Riska: POLLUX

\begin{itemize}
 \item \textbf{High risk} (DRd, n = 27) ORR = 85\% \quad \text{ORR = 67\%} \quad \text{ORR = 82\%}
 \item \textbf{Std risk} (Rd, n = 36) ORR = 95\%
\end{itemize}

\textbf{P values calculated using Mantel-Haenszel estimate of common odds ratios.}

\textbf{aCentral NGS.} High-risk patients had any of t(4;14), t(14;16), del17p. Standard-risk patients had an absence of high-risk abnormalities.
ORR by Cytogenetic Risk\(^a\): CASTOR

\(P = 0.039\)

\(P = 0.0003\)

\textbf{High risk} (n = 47)

\textbf{Std risk} (n = 131)

\(\text{ORR} = 82\%\)
\(\text{ORR} = 62\%\)
\(\text{ORR} = 85\%\)
\(\text{ORR} = 64\%\)

\(P\) values calculated using Mantel-Haenszel estimate of common odds ratios.

\(^a\)Central NGS. High-risk patients had any of t(4;14), t(14;16), del17p. Standard-risk patients had an absence of high-risk abnormalities.