

A PHASE IIA STUDY OF TISOTUMAB VEDOTIN (HUMAX®-TF-ADC) IN PATIENTS WITH RELAPSED, RECURRENT AND/OR METASTATIC CERVICAL CANCER

Vergote I, Concin N, Dean E, Lassen U, Drew Y, Machiels JP, Nielsen D, Arkenau T, Forster M, Jones R, Slomovitz B, Spicer J, Johnson M, Cornez N, Gennigens C, Fulton B, Basse L, Lisby S, Coleman RL, Hong DS

DISCLOSURES

• Disclosures include

		Disclosures		
Linda	Basse	Is a former employee of Genmab		
Robert	Coleman	Served on the scientific advisory committee for Genmab		
Emma	Dean	Has subsequently taken up employment with AstraZeneca		
David	Hong	 Research/Grant Funding: Bayer, Lilly, Genentech, LOXO, Pfizer, Amgen, Mirati, Ignyta, Merck, Daiichi-Sankyo, Eisai Travel, Accommodations, Expenses: MiRNA, LOXO Consulting or Advisory Role: Bayer, Baxter, Guidepoint Global Other ownership interests: Oncoresponse (founder) 		
Steen	Lisby	Is a former employee of Genmab		
Jean-Pascal	Machiels Vergote	 Advisory board: MSD, AstraZeneca, Debio, Nanobiotix, Innate Grants: Novartis, Roche, Janssen Research/Grant Funding: Genmab Consulting or Advisory Role: Genmab 		

- The remaining authors had no conflicts of interest to disclose
- This study was sponsored by Genmab A/S

CURRENT TREATMENT PARADIGM IN RECURRENT/ADVANCED CERVICAL CANCER

- First-line standard of care is paclitaxel-platinum in combination with bevacizumab 1-3
- Second-line therapies have limited response rates¹

Agent	Overall Response Rate (%) ¹	Agent	Overall Response Rate (%) ¹
Bevacizumab	11%	Pemetrexed	14%-15%
Topotecan	13%-19%	Irinotecan	21%
Vinorelbine	14%	Lapatinib	5%
Gemcitabine	5%	Pazopanib	9%
Albumin-bound paclitaxel ^a	29%	Pegylated liposomal	11%
Docetaxel	9%	doxorubicin	1170

• There is no standard of care in second-line cervical cancer, creating an unmet medical need for new treatments¹

^aDose dense regimen.

^{1.} Marth C et al. Ann Oncol. 2017;28(suppl 4):iv72-iv83. 2. Tewari KS et al. N Engl J Med. 2014;370(8):734-743. 3. Koh WJ et al. J Natl Compr Canc Netw. 2015;13(4):395-404.

TISOTUMAB VEDOTIN MECHANISM OF ACTION

Mechanism of action^{1,2}

- Tisotumab vedotin is an Antibody-Drug Conjugate (ADC) composed of a human mAb specific for Tissue Factor (TF), a proteasecleavable linker, and the microtubule disrupting agent MMAE^{1,a,b}
- TF is a transmembrane protein that is the main physiological initiator of coagulation and is involved in angiogenesis, cell adhesion, motility, and cell survival³
- TF is aberrantly expressed in a broad range of solid tumours, including cervical cancer, and is associated with poor prognosis^{4,5}

2. Internalization of tisotumab vedotin

3. Intracellular trafficking to the lysosomes

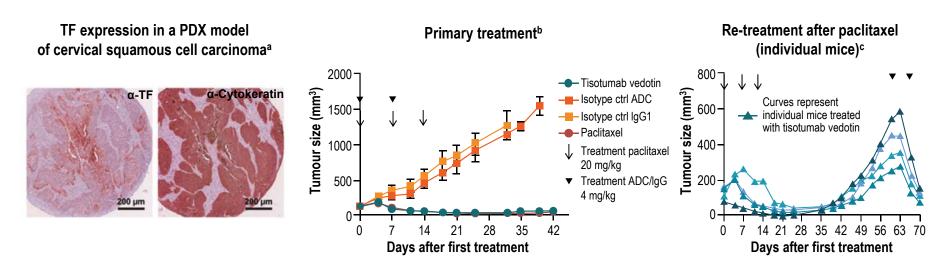
4. Enzymatic degradation of tisotumab vedotin, intracellular release of MMAE

5. MMAE induces cell death by microtubule disruption

6. Release of MMAE in tumour microenvironment induces bystander killing of neighbouring cancer cells

 $ADC = antibody - drug\ conjugate;\ mAb = monoclonal\ antibody;\ MMAE = monomethyl\ auristatin\ E.$

^aTissue factor is known as TF, CD142, and thromboplastin.


bMMAE-based ADC technology was licensed from Seattle Genetics, Inc., in a license and collaboration agreement.

1. Breij EC et al. Cancer Res. 2014;74(4):1214-1226. 2. De Goeij BE et al. Mol Cancer Ther. 2015;14(5):1130-1140. 3. Chu AJ. Int J Inflam. 2011;2011. doi: 10.4061/2011/367284.

4. Förster Y et al. *Clin Chim Acta*. 2006;364(1-2):12-21. **5.** Cocco E et al. *BMC Cancer*. 2011;11:263.

ANTI-TUMOUR ACTIVITY IN A CERVICAL SQUAMOUS CELL CARCINOMA PDX MODEL: EFFICACY IN A TAXANE-RELAPSED SETTING

Despite heterogeneous TF expression, tisotumab vedotin induced robust tumour regression, event after paclitaxel, in cervical cancer PDX models

ADC=antibody-drug conjugate; IgG=immunoglobulin G; PDX=patient-derived xenograft; TF=tissue factor.

^aA cervical squamous cell carcinoma PDX model was established by subcutaneous implantation of patient tumour fragments into mice. Immunohistochemistry analysis of PDX model using the TF human monoclonal antibody and human cytokeratin, which identifies human tumour cells. ^bDatapoints are the average tumour size per group, with 8 mice per group. ^cCurves and data points represent tumour size in individual mice. Patient-derived cervical squamous cell carcinoma cells were implanted in mice, and when the tumours reached a size of 80-200 mm³, mice were treated with 20 mg/kg of paclitaxel at the indicated time points. Upon tumour outgrowth following paclitaxel discontinuation, mice were treated with 2 doses of tisotumab vedotin 4 mg/kg at the indicated time points.

Breij EC et al. *Cancer Res.* 2014;74(4):1214-1226.

GEN701 IS THE FIRST-IN-HUMAN STUDY OF TISOTUMAB VEDOTIN

Key inclusion criteria:

- Patients with relapsed, advanced, and/or metastatic cancer who have failed available standard therapy
- · Measurable disease

Key exclusion criteria:

- Abnormal coagulation parameters at baseline
- Ongoing major bleeding
- Presence of CTCAE grade
 ≥2 peripheral neuropathy

Part 1: Dose escalation

- 3+3 dose-escalation design^a
- Dose range tested: 0.3-2.2 mg/kg IV q3w
- Patients enrolled included those with the following tumour types (N=27):
 - Gynaecologic (ovarian, cervical, and endometrial)
 - Prostate
 - Bladder
 - Oesophageal
 - NSCLC
 - SCCHN°
- Primary endpoint: Safety and tolerability
- Key secondary endpoints: Anti-tumour activity

Part 2: Expansion cohort

- Ongoing expansion cohort
- Dose selected: 2.0 mg/kg IV q3w

Cervical (n=34)^b

Ovarian (n=36)b

Prostate (n=18)

Bladder (n=15)

Oesophageal (n=15)

Endometrial (n=14)

NSCLC (n=15)

CTCAE=Common Terminology Criteria for Adverse Events; IV=intravenous; NSCLC=non–small cell lung cancer; SCCHN=squamous cell carcinoma of the head and neck.

aSubjects were enrolled into cohorts at increasing dose levels of tisotumab vedotin in 21-day treatment cycles. bIn phase 2, ovarian and cervical cohorts were expanded to approximately 30 patients based on preliminary efficacy observed in the first 14 patients enrolled. The SCCHN cohort was closed by protocol amendment 4 due to an event of pharyngeal tumour haemorrhage with fatal outcome. The event was deemed to be most likely related to the disease itself.

Clinicaltrials.gov. https://clinicaltrials.gov/ct2/show/NCT02001623. Accessed August 7, 2017.

PATIENT DISPOSITION IN THE CERVICAL CANCER COHORT

Treated	N=34
Ongoing on treatment	7
Withdrawn from trial	27
Due to adverse event ^a	5
Due to progressive disease	16
Other ^b	6
Died	0

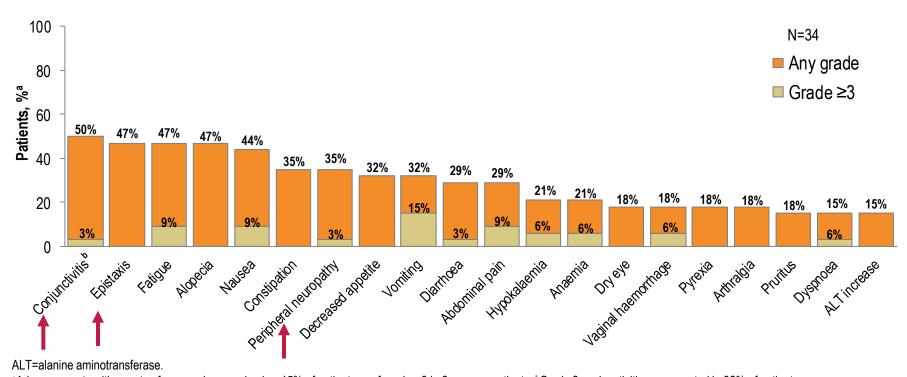
^aIncluding patients who experienced peripheral neuropathy (n=2), peripheral neuropathy and arthralgia (n=1), peripheral neuropathy and reduced visual acuity (n=1), and conjunctivitis (n=1).

^bIncluding patients who withdrew due to patient choice (n=1), investigator judgement (n=1), non-radiographic clinical progression (n=1), and other reasons (n=3).

Data cutoff date July 24, 2017.

BASELINE PATIENT CHARACTERISTICS IN CERVICAL CANCER COHORT

	Cervical (N=34)	
Age (median, range), y	4 3 (21-73)	
ECOG score, no (%)		
0	7 (21%)	
1	26 (76%)	
Missing	1 (3%)	
Cancer type, no (%)		
Adenocarcinoma ———	15 (44%)	
Adeno-squamous	3 (9%)	
Squamous	15 (44%)	
Missing/TBD	1 (3%)	
Previous lines of systemic treatments, no (%)		
Oa	3 (9%)	
1	13 (38%)	
2	11 (32%)	
3	4 (12%)	
4	3 (9%)	


	Cervical (N=34)
Prior treatments, %b	
Platinum	91%
Taxane	91%
Bevacizumabc	71%
GOG 240 regimen ^d	68%
≥1 platinum doublet	17%
Prior radiotherapy ^e	74%

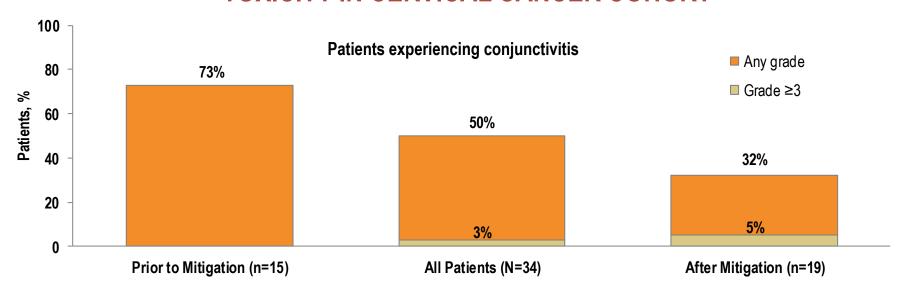
ECOG=Eastern Cooperative Oncology Group; TBD=to be determined.

^aPatients progressed on therapy administered for treatment of locally advanced disease. ^bMissing data from 1 patient. ^cIncluding bevacizumab administered as combination therapy as either platinum/bevacizumab/paclitaxel or topotecan/bevacizumab/paclitaxel. ^dCombination therapy with cisplatin, paclitaxel, and bevacizumab. ^eExternal beam radiotherapy administered to the cervix or surrounding tissues.

ADVERSE EVENTS (≥15% OF PATIENTS) IN CERVICAL CANCER COHORT

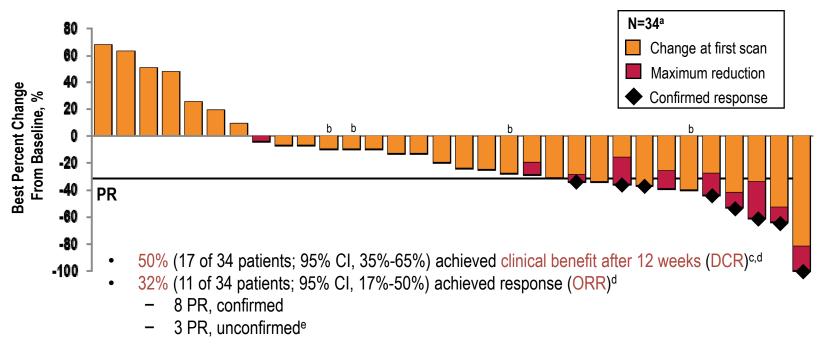
^aAdverse events with events of any grade occurring in ≥15% of patients or of grade ≥3 in 2 or more patients. ^bGrade 2 conjunctivitis was reported in 32% of patients. Data cutoff date July 24, 2017.

ADVERSE EVENTS OF SPECIAL INTEREST IN CERVICAL CANCER COHORT

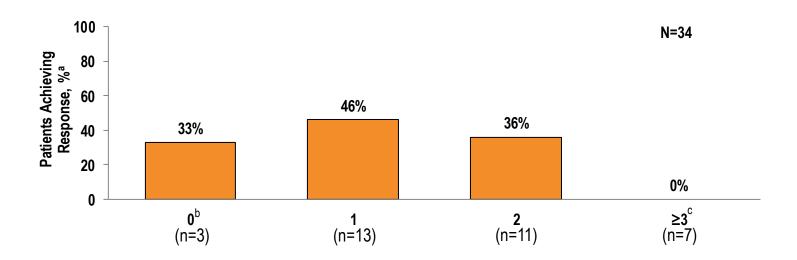

	N=34		
AEOSI Term	Any Grade, n (%)	Grade ≥3, n (%)	
Ocular (any) ^a	18 (53%)	1 (3%)	
Conjunctivitis	17 (50%)	1 (3%)	
Conjunctivitis scar	1 (3%)	0	
Conjunctivitis viral	1 (3%)	0	
Conjunctival ulceration	0	0	
Keratitis	1 (3%)	0	
Ulcerative keratitis	2 (6%)	0	
Symblepharon	0	0	
Neuropathy (any)	12 (35%)	2 (6%)	

AESOI=adverse events of special interest.

^aMost patients who experienced other events than conjunctivitis also experienced conjunctivitis. Data cutoff date July 24, 2017.

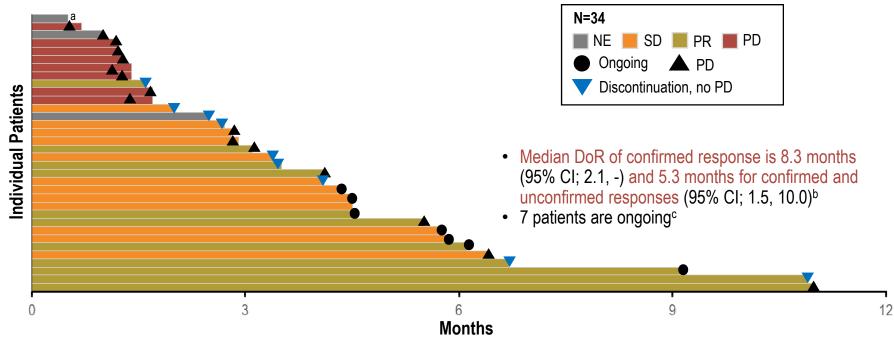

MITIGATION MEASURES SUBSTANTIALLY REDUCED CONJUNCTIVAL TOXICITY IN CERVICAL CANCER COHORT

- Risk mitigation measures involved a prophylactic steroid, lubricating eye drops, and cooling eye masks worn during treatment infusion, as well as stricter dose adjustment guidance
- Mitigation measures substantially reduced the rates of conjunctival toxicity


32% OF PATIENTS WITH RECURRENT/ADVANCED CERVICAL CANCER ACHIEVED RESPONSE WITH TISOTUMAB VEDOTIN

CI=confidence interval; CR=complete response; CT=computed tomography; DCR=disease control rate; ORR=overall response rate; PD=progressive disease; PR=partial response; RECIST=Response Evaluation Criteria in Solid Tumors; SD=stable disease.

^aTwo patients were withdrawn prior to CT scan, and so are not represented in the graph. ^bPD due to new lesion at same scan. ^cClinical benefit was defined as the DCR rate, the proportion of patients who achieved a CR, PR, or SD after 12 weeks. ^dResponse was as assessed by investigators using standard RECIST 1.1 criteria. ^eOne of which is still ongoing. Data cutoff date July 24, 2017.


RESPONSES WITH TISOTUMAB VEDOTIN BY PRIOR LINES IN CERVICAL CANCER COHORT

Prior Systemic Therapies, no.

^aIncluding confirmed and unconfirmed responses. ^bPatients were refractory to therapy administered for early stage disease. ^cPatients received either 3 (n=4) or 4 (n=3) prior systemic therapies.

DURATION OF RESPONSE WITH TISOTUMAB VEDOTIN IN CERVICAL CANCER COHORT

DoR=duration of response; NE=not evaluated; PD=progressive disease; PFS=progression-free survival; PR=partial response; SD=stable disease.

^aPatient withdrawn. ^b 4 responders have progressed as of the data cutoff of July 24, 2017 and 4 have been withdrawn because of other reasons and are thus censored for DoR. ^cEstimated median PFS was 6.4 months.

TISOTUMAB VEDOTIN DEMONSTRATED ROBUST EFFICACY AND A MANAGEABLE SAFETY PROFILE IN THE CERVICAL CANCER EXPANSION COHORT

- Tisotumab vedotin is an ADC composed of a human mAb specific for TF, a protease cleavable linker, and the microtubule disrupting agent MMAE
- The safety profile of tisotumab vedotin in recurrent cervical cancer was generally consistent with other MMAE-based ADCs
 - Conjunctivitis was the most common TEAE
 - The mitigation measures substantially reduced conjunctival toxicity
- ORR (confirmed + unconfirmed responders) is 32% and median DoR (confirmed responders) is 8.3 months
- The substantial efficacy and the manageable safety warrants further development of tisotumab vedotin in previously treated recurrent/advanced cervical cancer patients

ADC=antibody-drug conjugate; DoR=duration of response; mAb=monoclonal antibody; MMAE=monomethyl auristatin E; ORR=overall response rate; TEAE=treatment-emergent adverse event; TF=tissue factor.

ACKNOWLEDGEMENTS

The authors would like to thank the patients, investigators, and study teams who were involved in the GEN701 study

This presentation was drafted by Cindy Puente, PhD, David Bonnyay, PhD, and Sandi Lusk on behalf of Ogilvy CommonHealth, funded by Genmab A/S, with the ongoing guidance of the primary author, Dr Vergote. The final presentation was approved by all the authors.