
Open-label, Multicenter, Dose-escalation Phase 1b Study to Assess the Subcutaneous Delivery of Daratumumab in Patients (Pts) With Relapsed or Refractory Multiple Myeloma (PAVO)

<u>Saad Z. Usmani</u>,^{1,*} Hareth Nahi,^{2,*} Maria-Victoria Mateos,³ Henk M. Lokhorst,⁴ Ajai Chari,⁵ Jonathan L. Kaufman,⁶ Philippe Moreau,⁷ Albert Oriol,⁸ Torben Plesner,⁹ Lotfi Benboubker,¹⁰ Peter Hellemans,¹¹ Tara Masterson,¹² Pamela L. Clemens,¹² Tahamtan Ahmadi,¹² Kevin Liu,¹³ Jesus San-Miguel¹⁴

¹Levine Cancer Institute/Carolinas HealthCare System, Charlotte, NC, USA; ²Karolinska Institute, Department of Medicine, Division of Hematology, Karolinska University Hospital at Huddinge, Stockholm, Sweden; ³University Hospital of Salamanca/IBSAL, Salamanca, Spain; ⁴Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands; ⁵Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA; ⁶Winship Cancer Institute, Emory University, Atlanta, GA, USA; ⁷University Hospital of Nantes, Nantes, France; ⁸Institut Català d'Oncologia, HGTiP, Barcelona, Spain; ⁹Vejle Hospital and University of Southern Denmark, Vejle, Denmark; ¹⁰CHU Tours Hopital Bretonneau, Tours, France; ¹¹Janssen Research & Development, Beerse, Belgium; ¹²Janssen Research & Development, LLC, Spring House, PA, USA; ¹³Janssen Research & Development, LLC, Raritan, NJ, USA; ¹⁴Clínica Universidad de Navarra-CIMA, IDISNA, Pamplona, Spain. *Joint first author.

Daratumumab: Mechanism of Action

 Daratumumab (DARA) is a human monoclonal antibody that targets CD38 with a direct on-tumor and immunomodulatory mechanism of action (MoA)¹⁻⁵

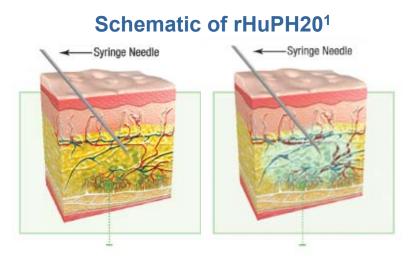
CDC, complement-dependent cytotoxicity; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis.

- 1. Lammerts van Bueren J, et al. Blood. 2014;124. Abstract 3474.
- 2. Overdijk MB, et al. J Immunol. 2016;197(3):807-813.
- 3. de Weers M, et al. J Immunol. 2011;186(3):1840-1848.
- 4. Overdijk MB, et al. MAbs. 2015;7(2):311-321.
- 5. Krejcik J, et al. Blood. 2016;128(3):384-394.

Background

- DARA 16 mg/kg IV monotherapy is approved in the United States, Europe, Canada, Singapore, and Mexico
 - DARA IV in combination with standard of care regimens is approved in the United States
- Intravenous (IV) DARA achieves rapid, deep, and durable responses with significant clinical benefit as monotherapy and when combined with established standard of care¹⁻³
- The median duration of first, second, and subsequent IV infusions was 7.0, 4.2, and 3.4 hours, respectively⁴
- DARA IV-associated infusion-related reactions (IRRs) are manageable, and the majority (92%-96%) occur during the first infusion¹⁻³

^{1.} Usmani SZ, et al. Blood. 2016;128(1):37-44.

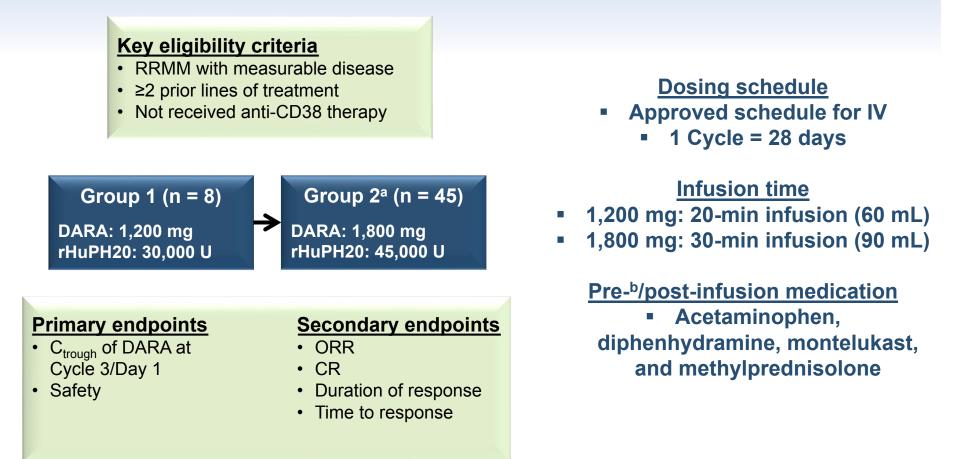

^{2.} Dimopoulos M, et al. N Engl J Med. 2016;375(14):1319-1331.

^{3.} Palumbo A, et al. N Engl J Med. 2016;375(8):754-766.

^{4.} Lonial S, et al. Lancet. 2016;387:1551-60.

Recombinant Human Hyaluronidase

- ENHANZE[™] platform of recombinant human hyaluronidase (rHuPH20) temporarily breaks down the hyaluronan barrier, allowing rapid absorption of injected drugs¹
- Herceptin SC[®] and MabThera SC[®] are approved in Europe as co-formulate products with rHuPH20^{2,3}
 - Dosing time is 5 to 8 minutes with SC versus 0.5 to 6 hours with IV⁴⁻⁶


Aim: To determine the safety, pharmacokinetics, and efficacy of DARA as SC administration

- Halozyme Therapeutics. Mechanism of action for Hylenex recombinant (hyaluronidase human injection). <u>www.hylenex.com/mechanism-of-action</u>. Accessed 11/8/2016.
- 2. European Medicines Agency. Herceptin: EPAR product information. 2016

- 3. European Medicines Agency. MabThera: EPAR product information. 2016.
- 4. Ismael G, et al. *Lancet Oncology*. 2012;13(9):869-878.
- 5. Shpilberg O, et al. Br J Cancer. 2013;109(6):1556-1561.
- 6. De Cock E, et al. *Plos One*. 2016;11(6):e0157957.

PAVO: Study Design

Phase 1b, open-label, multicenter, dose-finding, proof of concept study

^aGroup 2 comprises 4 distinct cohorts, each treated with DARA 1,800 mg and rHuPH20 45,000 U. C_{trough} on Cycle 3/Day 1 in Group 1 supported dose selection for Group 2. The study evaluation team reviewed safety after Cycle 1 and PK after Cycle 3/Day 1 for each group. ^bAdministered 1 hour prior to infusion.

RRMM, relapsed or refractory multiple myeloma; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; C_{trough}, trough concentration; ORR, overall response rate; CR, complete response; PK, pharmacokinetic.

Baseline Demographic and Clinical Characteristics

Characteristic	1,200 mg n = 8	1,800 mg n = 45	Characteristic	1,200 mg n = 8	1,800 mg n = 45
Age, y Median (range) ≥75, % (n)	66 (49-78) 13 (1)	63 (36-79) 9 (4)	Prior lines of therapy, % (n) Median (range)	5 (2-10)	4 (2-11)
Median (range) weight, kg	75.0 (53.0-82.5)	74.8 (48.0-133.0)	≤3	38 (3) 63 (5)	36 (16) 64 (29)
Baseline ECOG status,			Prior ASCT, %	63 (5)	82 (37)
% (n) 0 1	25 (2) 63 (5)	24 (11) 73 (33)	Prior PI, % Prior bortezomib	100 (8) 100 (8)	100 (45) 96 (43)
2	13 (1)	2 (1)	Prior IMiD, % Prior lenalidomide	100 (8) 100 (8)	100 (45) 100 (45)
ISS stage, % (n) ^{a,b} 	17 (1) 50 (3) 33 (2)	47 (21) 33 (15) 20 (9)	Refractory to, % PI only IMiD only	0 (0) 13 (1)	4 (2) 20 (9)
Median (range) time from diagnosis, y	6.55 (1.9-10.3)	5.94 (1.1-15.2)	Both PI and IMiD Last line of therapy	63 (5) 88 (7)	58 (26) 71 (32)

ECOG, Eastern Cooperative Oncology Group; ISS, International Staging System; ASCT, autologous stem cell transplantation; PI, proteasome inhibitor; IMiD, immunomodulatory drug. ^aISS stage is derived based on the combination of serum β2-microglobulin and albumin. ^bn = 6 for the 1,200-mg group.

Patient Disposition

- Clinical cut-off date: November 15, 2016
- Median (range) follow-up
 - 1,200 mg: 6.4 (1.6-12.0) months
 - 1,800 mg: 4.3 (0.8-8.6) months
- Median (range) duration of treatment
 - 1,200 mg: 2.6 (0.7-12.0) months
 - 1,800 mg: 3.4 (0.7-8.6) months

	1,200 mg n = 8	1,800 mg n = 45
Patients treated, n	8	45
Patients who discontinued treatment, % (n) Reason for discontinuation	88 (7)	33 (15)
Progressive disease	63 (5)	27 (12)
Withdrawal by patient	13 (1)	0 (0)
Physician decision	0 (0)	4 (2)
Death	13 (1)	2 (1)

Summary of Safety Events

TEAE	1,200 mg n = 8	1,800 mg n = 45
Drug-related TEAE, % (n)	63 (5)	62 (28)
Serious drug-related TEAE, % (n)	13 (1)	7 (3)
Grade ≥3 TEAE, % (n)	63 (5)	40 (18)
All-grade hematologic TEAEs >25%, % (n)		
Anemia	25 (2)	31 (14)
Thrombocytopenia	38 (3)	18 (8)
All-grade nonhematologic TEAEs >25%, % (n)		
Upper respiratory tract infection	38 (3)	9 (4)
Insomnia	38 (3)	9 (4)
Decreased appetite	38 (3)	7 (3)

 No treatment discontinuations due to TEAEs were observed in the 1,800-mg group

AE profile of DARA-PH20 was consistent with IV DARA

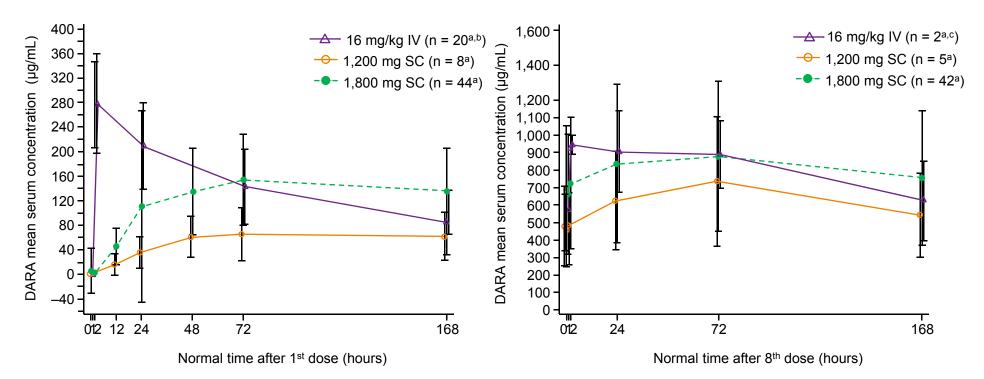
Grade 3/4 TEAEs

Grade 3/4 TEAEs (>1 patient)	1,200 mg n = 8	1,800 mg n = 45
Hematologic, % (n)		
Anemia	13 (1)	13 (6)
Thrombocytopenia	13 (1)	7 (3)
Neutropenia	13 (1)	7 (3)
Lymphopenia	0 (0)	7 (3)
Nonhematologic, % (n)		
Hypertension	25 (2)	4 (2)
Fatigue	25 (2)	2 (1)
Device-related infection	0 (0)	4 (2)
Hyponatremia	0 (0)	4 (2)

AE profile of DARA-PH20 was consistent with IV DARA

IRRs

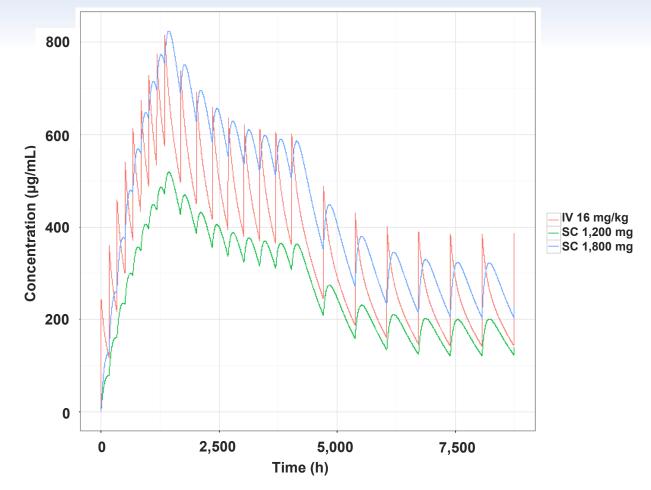
	1,200 mg n = 8	1,800 mg n = 45
IRR, % (n)	13 (1)	24 (11)
Chills	13 (1)	9 (4)
Pyrexia	0 (0)	9 (4)
Pruritus	0 (0)	4 (2)
Dyspnea	13 (1)	0 (0)
Flushing	0 (0)	2 (1)
Hypertension	0 (0)	2 (1)
Hypotension	0 (0)	2 (1)
Nausea	0 (0)	2 (1)
Non-cardiac chest pain	13 (1)	0 (0)
Oropharyngeal pain	0 (0)	2 (1)
Paresthesia	0 (0)	2 (1)
Rash	0 (0)	2 (1)
Sinus headache	0 (0)	2 (1)
Tongue edema	0 (0)	2 (1)
Vomiting	0 (0)	2 (1)
Wheezing	0 (0)	2 (1)


- All IRRs in the 1,800-mg group were grade 1 or 2
- One grade 3 IRR of dyspnea in the 1,200-mg group
- No grade 4 IRRs were observed
- All IRRs occurred during or within 4 hours of the first infusion
- No IRRs occurred during subsequent infusions in either group
- Abdominal wall SC injections were well tolerated

Low IRR incidence and severity with DARA SC

Dose Mean (SD) Profiles

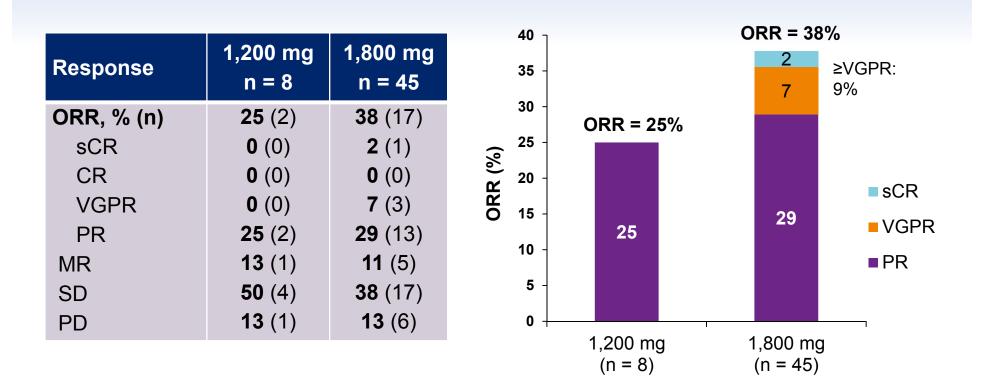
1st dose mean


8th dose mean

PK for 1,800 mg SC dose is consistent with the 16 mg/kg IV dose, with comparable C_{trough} and variability

SD, standard deviation. ^aNumber of patients with full PK profile at pre-dose. ^bFrom study GEN501 Part 2. ^cFrom study GEN501 Part 1.

Simulation of Mean Concentration-Time Profiles of DARA Following SC and IV Dosing^a



- Similar C_{max} for SC 1,800 mg versus IV 16 mg/kg overall
- Lower C_{max} for SC 1,800 mg during the initial weekly administration
- Higher C_{trough} for SC 1,800 mg versus SC 1,200 mg

C_{max}, peak plasma concentration.

^aDosing schedule is QW in Cycles 1 to 2, Q2W in Cycles 3 to 6, and Q4W thereafter.

Responses to DARA-PH20 were observed across both groups

Deeper responses were observed in the 1,800-mg group

Response-evaluable set.

sCR, stringent complete response; VGPR, very good partial response; PR, partial response; MR, minimal response; SD, stable disease; PD, progressive disease.

Conclusions

- DARA can be combined safely with rHuPH20
- SC DARA was well tolerated with low IRR rates
 - SC injections were well tolerated
- PK profile of the 1,800-mg dose was consistent with DARA 16 mg/kg IV
- Efficacy was consistent with IV DARA in a similar patient population
 - 38% ORR, including deep responses (1 sCR)

Tolerability, safety, and PK data support continued development of SC DARA in different settings

Acknowledgments

Patients who participated in

Investigators

this study

- Data and safety monitoring committee
- Staff members involved in data collection and analyses
- Halozyme for their partnership with the study

6 countries

- This study was funded by Janssen Research & Development, LLC
- Medical writing and editorial support were provided by Kristin Runkle, PhD, of MedErgy, and were funded by Janssen Global Services, LLC

Backup Slide

C_{trough} of DARA on Cycle 3/Day 1

Study	Dose/route	n	Mean trough (µg/mL)	%CV
GEN501 Part 2	16 mg/kg IV	27	617.17	51%
SIRIUS ¹	16 mg/kg IV	73	573.49	58%
PAVO	1,200 mg SC 1,800 mg SC	5 39	510.46 714.00	47% 50%

- Mean C_{trough} was higher in the 1,800-mg group compared with the 1,200-mg group
- Variability (%CV) was similar between SC DARA and IV DARA 16 mg/kg

CV, coefficient of variation.

Analysis includes all subjects with a concentration value at the Cycle 3/Day 1 trough time point, regardless of missed doses. Cycle 3/Day 1 represents the end of weekly dosing. 1. Clemens P, et al. *Clin Pharmacokinet.* 29 Nov 2016. Epub ahead of print.