Daratumumab (DARA) in Combination with Carfilzomib, Lenalidomide, and Dexamethasone (KRd) in Patients (pts) With Newly Diagnosed Multiple Myeloma (MMY1001): an Open-label, Phase 1b Study

Andrzej Jakubowiak,1 Ajai Chari,2 Sagar Lonial,3 Brendan Weiss,4 Raymond L. Comenzo,5 Kaida Wu,6 Nushmia Z. Khokhar,6 Jianping Wang,7 Parul Doshi,6 Saad Z. Usmani8

1University of Chicago Medical Center, Chicago, IL; 2Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA; 3Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA; 4Abramson Cancer Center and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 5Division of Hematology/Oncology, John C. Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA; 6Janssen Research & Development, LLC, Spring House, PA, USA; 7Janssen Research & Development, LLC, Raritan, NJ, USA; 8Levine Cancer Institute/Carolina HealthCare System, Charlotte, NC, USA.
Background

- Triplet regimens with proteasome inhibitor (PI) and/or immunomodulatory drug (IMiD), with or without ASCT, are now established as standard of care for newly diagnosed myeloma.

- Among triplets, extended treatment with KRd emerged as highly active in newly diagnosed myeloma\(^1,2\)

- The KRd results appear to be improved by incorporation of ASCT\(^3-5\)
 - sCR rate 51% w/o ASCT and 74% with ASCT
 - 3-year PFS 80% w/o ASCT and 86% with ASCT

- We hypothesized that KRd activity can alternatively be improved by incorporating daratumumab into KRd treatment regimen.
Daratumumab (DARA)

- Human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory MoA\(^1\)
- Approved as **monotherapy** in many countries for heavily pretreated RRMM
- Approved in **combination** with standard of care regimens in RRMM after ≥1 prior therapy in the USA, EU, and other countries
- DARA induces rapid, deep and durable responses in combination with a PI (bortezomib) or an IMiD (lenalidomide) in RRMM\(^2,3\)

MoA, mechanism of action; RRMM, relapsed/refractory multiple myeloma; CDC, cellular dependent cytotoxicity; ADCC, antibody dependent cellular cytotoxicity; ADCP, antibody dependent cellular phagocytosis; MDSC, myeloid-derived suppressor cell.

These studies provided rationale for evaluation of DARA + KRd in this phase 1b study.

POLLUX (ITT)
Median follow-up: 25.4 months

- **24-month PFS**
 - DRd: 68%
 - Rd: 41%
 - Median: 17.5 mo

- **HR, 0.41**
 - (95% CI, 0.31-0.53; \(P < 0.0001\))

CASTOR (1 prior line)
Median follow-up: 19.4 months

- **18-month PFS**
 - DVd: 68%
 - Vd: 12%
 - Median: 7.9 mo

- **HR, 0.19**
 - (95% CI, 0.12-0.29; \(P < 0.0001\))

SOC, standard of care; ITT, intent-to-treat; DRd, daratumumab/lenalidomide/dexamethasone; Rd, lenalidomide/dexamethasone; HR, hazard ratio; CI, confidence interval; DVd, daratumumab/bortezomib/dexamethasone; Vd, bortezomib/dexamethasone.

aKaplan-Meier estimates.

Exploratory analyses based on clinical cut-off: January 11, 2017 for CASTOR; March 7, 2017 for POLLUX.

Study Design

Open-label, Multicenter, Phase 1b Study (N = 22)

Endpoints

Primary
- Safety, tolerability

Secondary
- ORR, duration of response, time to response, IRR

Exploratory
- PFS

Eligibility/Treatment
- NDMM
- Transplant eligible and non-eligible
- Treatment duration: ≤13 cycles or until elective discontinuation for ASCT
- No clinically significant cardiac disease; echo required at screening

Dosing Schedule (28-d cycles)

Daratumumab:
- **Split dose: 8 mg/kg Days 1-2 of Cycle 1**
- 16 mg/kg QW on Cycles 1-2, Q2W on Cycles 3-6, and Q4W thereafter

Carfilzomib:
- 20 mg/m² C1D1
- Escalated to 70 mg/m² C1D8+; **weekly (Days 1, 8, 15)**

Lenalidomide:
- 25 mg; Days 1-21 of each cycle

Dexamethasone: 40 mg/week

Pre- and post-infusion medications:
- Dexamethasone 20 mg
- Diphenhydramine 25-50 mg
- Paracetamol 650-1,000 mg
- Montelukast 10 mg

Echo, echocardiogram; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; C1D1, Cycle 1 Day 1; C1D8, Cycle 1 Day 8; IRR, infusion-related reaction; C1D3, Cycle 1 Day 3.

-20 mg if >75 y. **On daratumumab dosing days, dexamethasone 20 mg IV was administered as pre-medication on infusion day and 20 mg PO the day after infusion; for DARA, split first dose dexamethasone 20 mg IV was administered as a pre-medication on C1D1 and C1D2, on C1D3, administration of low-dose methylprednisolone (≤20 mg PO) was optional.** Required before first daratumumab dose, optional for subsequent doses.
Baseline Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>DARA + KRd (N = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, n (%)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>59.5 (34-74)</td>
</tr>
<tr>
<td><65</td>
<td>15 (68)</td>
</tr>
<tr>
<td>65 - <75</td>
<td>7 (32)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>12 (55)</td>
</tr>
<tr>
<td>Female</td>
<td>10 (46)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>19 (86)</td>
</tr>
<tr>
<td>African American</td>
<td>1 (5)</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Not reported</td>
<td>1 (5)</td>
</tr>
<tr>
<td>ECOG score, n (%)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>12 (55)</td>
</tr>
<tr>
<td>1</td>
<td>9 (41)</td>
</tr>
<tr>
<td>2</td>
<td>1 (5)</td>
</tr>
</tbody>
</table>

ECOG, Eastern Cooperative Oncology Group.
Patient Disposition

- Median follow-up:
 - 10.8 (range, 4.0-12.5) months
- Median number of treatment cycles:
 - 11.5 (range, 1.0-13.0)
- Except for 3 patients, all escalated to carfilzomib 70 mg/m² by C2D1
 - 1 discontinued treatment before C2D1
 - 1 dose reduction to 56 mg/m² at C2D1
 - 1 escalated to 70 mg/m² at C3D8

DARA + KRd

N = 22

Discontinued treatment
8 (36%)

AE
1 (5%)

Progressive disease
1 (5%)

ASCT
6 (27%)

Clinical cut-off date: March 24th, 2017

Presented by: Andrzej Jakubowiak

C2D1, Cycle 2 Day 1; C3D8, Cycle 3 Day 8; AE, adverse event.
Most Common (≥30%) Hematologic TEAEs (N = 22)

- Lymphopenia: All 64%, Grade 3/4 68%
- Thrombocytopenia: All 55%, Grade 3/4 9%
- Anemia: All 46%, Grade 3/4 9%
- Leukopenia: All 41%, Grade 3/4 9%
- Neutropenia: All 32%, Grade 3/4 14%

TEAE, treatment emergent adverse event.

Presented by: Andrzej Jakubowiak
Most Common (≥30%) Nonhematologic TEAEs (N = 22)

Safety profile is consistent with previous reports for DARA or KRd

ALT: alanine aminotransferase.
Serious TEAEs (N = 22)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary embolism</td>
<td>3</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>2</td>
</tr>
<tr>
<td>Influenza</td>
<td>2</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1</td>
</tr>
<tr>
<td>Chest pain</td>
<td>1</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
</tr>
<tr>
<td>Dermatitis allergic</td>
<td>1</td>
</tr>
<tr>
<td>Presyncope</td>
<td>1</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>1</td>
</tr>
<tr>
<td>Lobular pneumonia</td>
<td>1</td>
</tr>
<tr>
<td>Pneumonia bacterial</td>
<td>1</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>1</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Serious TEAEs**: 10 of 22 patients (46%)
- **Number (%) of patients with a serious TEAE reasonably related to study drug**
 - Daratumumab: 3 (14%)
 - Carfilzomib: 5 (23%)
 - Lenalidomide: 5 (23%)
 - Dexamethasone: 2 (9%)
- 1 (5%) treatment discontinuation due to pulmonary embolism; unrelated to daratumumab or carfilzomib
- All patients were on aspirin prophylaxis

Consistent with previous reports from KRd studies

* Bilateral deep vein thrombosis and pulmonary embolism was reported in 1 patient.
* Independent Data and Safety Monitoring Board was notified of serious TEAEs on a regular basis.
Echocardiogram Assessment

- Median left ventricular ejection fraction: no change from baseline over time
- 1 patient had a transient grade 3 SAE of cardiac failure; possibly related to daratumumab or carfilzomib
 - Patient resumed treatment on C2D1 with reduced carfilzomib dose (56 mg/m²)
 - Patient elected ASCT on study Day 113 and ended treatment with VGPR

<table>
<thead>
<tr>
<th>Time point</th>
<th>Left Ventricular Ejection Fraction</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>60 (55-77)</td>
<td></td>
</tr>
<tr>
<td>Cycle 3</td>
<td>60 (55-78)</td>
<td></td>
</tr>
<tr>
<td>Cycle 6</td>
<td>59 (50-70)</td>
<td></td>
</tr>
<tr>
<td>Cycle 9</td>
<td>60 (50-69)</td>
<td></td>
</tr>
<tr>
<td>Cycle 12</td>
<td>62 (56-75)</td>
<td></td>
</tr>
</tbody>
</table>

No apparent adverse impact on cardiac function

SAE, serious adverse event; VGPR, very good partial response.
Infusion Times and Reactions (N = 22)

Infusion Times

<table>
<thead>
<tr>
<th>Infusion</th>
<th>Median (range) infusion time, h</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
</tr>
<tr>
<td>C1D1</td>
<td>4.15 (4.0-6.0)</td>
</tr>
<tr>
<td>C1D2</td>
<td>4.15 (3.9-6.0)</td>
</tr>
<tr>
<td>Second</td>
<td>4.18 (3.6-7.1)</td>
</tr>
<tr>
<td>Subsequent</td>
<td>3.38 (1.4-6.1)</td>
</tr>
</tbody>
</table>

Infusion-related reactions (IRR), %

- No grade 3/4
- Occurrence
 - First infusion: 5 (23%) patients
 - Second infusion: 1 (5%) patient
 - Subsequent infusions: 1 (5%) patient

Lower rates of IRRs observed with split first dosing
Response Ratea,b

- Median number of treatment cycles: 11.5 (range, 1.0-13.0)

Depth of response improved with duration of treatment

\begin{itemize}
 \item After 4 cycles:
 \begin{itemize}
 \item n = 21
 \item ≥PR: 100%
 \item ≥VGPR: 71%
 \item ≥CR: 5%
 \item sCR: 5%
 \end{itemize}

 \item After 8 cycles:
 \begin{itemize}
 \item n = 15*a
 \item ≥PR: 100%
 \item ≥VGPR: 87%
 \item ≥CR: 27%
 \item sCR: 27%
 \end{itemize}

 \item Best response:
 \begin{itemize}
 \item n = 21
 \item ≥PR: 100%
 \item ≥VGPR: 91%
 \item ≥CR: 43%
 \item sCR: 29%
 \end{itemize}
\end{itemize}

a5 patients who proceeded to ASCT before C8 and 1 patient who discontinued due to PD at C7 were excluded.

bPR, partial response; CR, complete response.

aResponse-evaluable population. bResponse rate (≥PR) evaluated by IMWG criteria; M-protein measurements by central lab assessment.
DARA (16 mg/kg) + KRd

- Median follow-up: 10.8 (range, 4.0-12.5) months
- Overall survival = 100%

12-month PFS rate\(^a\) = 94%

\(^a\)Kaplan-Meier estimate.
Stem Cell Harvest and ASCTa

- Median number of CD34+ cells collected from patients: \(10.4 \times 10^6\) cells/kg (\(n = 19\))
- Median 5 treatment cycles prior to stem cell harvest
- 14 (74\%) patients had \(\geq VGPR\) prior to stem cell harvest

\textbf{Stem cell yield is consistent with previous KRd studies}

<table>
<thead>
<tr>
<th>Patient</th>
<th>Stem cell mobilization</th>
<th>Total CD34+ cells (x106/kg body weight)</th>
<th>Treatment cycle at ASCT</th>
<th>Best responseb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plerixafor and Filgrastim</td>
<td>30</td>
<td>9</td>
<td>sCR</td>
</tr>
<tr>
<td>2</td>
<td>Plerixafor and Filgrastim</td>
<td>12</td>
<td>5</td>
<td>VGPR</td>
</tr>
<tr>
<td>3</td>
<td>Plerixafor and Filgrastim</td>
<td>28</td>
<td>4</td>
<td>VGPR</td>
</tr>
<tr>
<td>4</td>
<td>Filgrastim</td>
<td>38</td>
<td>4</td>
<td>VGPR</td>
</tr>
<tr>
<td>5</td>
<td>Plerixafor and Filgrastim</td>
<td>10.4</td>
<td>5</td>
<td>VGPR</td>
</tr>
<tr>
<td>6</td>
<td>Filgrastim</td>
<td>6.5</td>
<td>4</td>
<td>VGPR</td>
</tr>
</tbody>
</table>

aPer protocol, patients who continued to ASCT discontinued study treatment.
bBest response among patients who elected ASCT.
Conclusions

- **DARA + KRd was well tolerated**
 - Safety is consistent with previous reports of DARA and KRd
 - Low IRR rates associated with split first dose; no grade 3/4

- **Highly effective with 100% ORR**
 - 91% ≥VGPR and 43% ≥CR
 - Depth of response improved with duration of treatment

- **No adverse impact on stem cell collection (10.4 x 10^6 cells/kg)**
 - DARA is feasible as part of induction therapy

Data from this study support further investigation of DARA-KRd in NDMM
Ongoing Phase 3 Studies

- **NDMM (transplant-ineligible)**
 - ALCYONE (DARA + VMP)
 - MAIA (DARA + Rd)

- **NDMM (transplant-eligible)**
 - CASSIOPEIA (DARA + VTd)

- **RRMM**
 - CANDOR (DARA + Kd)
 - APOLLO (DARA + Pd)
Acknowledgments

- Patients who participated in these studies
- Staff members at the study sites
- Data and safety monitoring committee
- Staff members involved in data collection and analyses

This study was funded by Janssen Research & Development, LLC. Medical writing and editorial support was provided by Kristin Runkle, PhD (MedErgy) and was funded by Janssen Global Services, LLC.
Backup
Adverse Event of Interest

- 61 year old male diagnosed with multiple myeloma
 - History of ongoing grade 2 coronary artery disease with stent placement, ongoing grade 1 intermittent chest pain, and grade 1 hypertension
- Grade 3 SAE of cardiac failure reported on study Day 11, which lasted for 4 days while study treatment was interrupted
 - Considered possibly related to daratumumab and carfilzomib
- Patient resumed treatment on Cycle 2 Day 1 with reduced carfilzomib dose (56 mg/m²)
- No additional cardiac TEAEs or dose reductions were reported
- Patient elected ASCT on study Day 113 and ended study treatment with a clinical response of VGPR

SAE, serious adverse event; TEAE, treatment emergent adverse event; ASCT, autologous stem cell transplant; VGPR, very good partial response.
Carfilzomib Dose Escalation

<table>
<thead>
<tr>
<th>Patient</th>
<th>C1D1</th>
<th>D1D8</th>
<th>C1D15</th>
<th>C2D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 2</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 3</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 4</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 5</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 6</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 7</td>
<td>20</td>
<td>70</td>
<td>0</td>
<td>Off Study</td>
</tr>
<tr>
<td>Patient 8</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 9</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 10</td>
<td>20</td>
<td>70</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Patient 11</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>C1D1</th>
<th>D1D8</th>
<th>C1D15</th>
<th>C2D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 12</td>
<td>20</td>
<td>56</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 13</td>
<td>20</td>
<td>36</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 14</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 15</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 16</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 17</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Patient 18</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 19</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 20</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 21</td>
<td>20</td>
<td>36</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Patient 22</td>
<td>20</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>