Disclosures

- Consultation: Bristol-Myers Squibb, Celgene, Amgen, Janssen, Takeda
- Honoraria: Bristol-Myers Squibb, Celgene, Amgen, Janssen, Takeda
- Speakers bureaus: Bristol-Myers Squibb, Celgene, Amgen, Janssen, Takeda
- Travel expenses: Janssen, Celgene

Daratumumab Plus Bortezomib-Melphalan-Prednisone (VMP) in Elderly (≥75 Years of Age) Patients With Newly Diagnosed Multiple Myeloma Ineligible for Transplantation (ALCYONE)

Jesus San-Miguel,¹ Shinsuke Iida,² Joan Blade,³ Maria-Victoria Mateos,⁴ Je-Jung Lee,⁵ Mamta Garg,⁶ Vania Hungria,⁷ Meral Beksac,⁸ Ivan Spicka,⁹ Stefan Knop,¹⁰ Ludek Pour,¹¹ Philip Campbell,¹² Andrzej Jakubowiak,¹³ Michael K. Bauer,¹⁴ Jim Wang,¹⁵ Susan Wroblewski,¹⁶ Rachel Kobos,¹⁵ Ming Qi,¹⁶ <u>Michele Cavo</u>¹⁷

 ¹Clínica Universidad de Navarra-CIMA, IDISNA, CIBERONC, Pamplona, Spain; ²Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; ³Servei d'Hematologia, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; ⁴University Hospital of Salamanca/IBSAL, Salamanca, Spain; ⁵Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea; ⁶Leicester Royal Infirmary – Haematology, Leicester, UK;
⁷Irmandade Da Santa Casa De Misericordia De São Paulo, São Paulo, Brazil; ⁸Ankara University School of Medicine Department of Hematology, Ankara, Turkey; ⁹Clinical Department of Haematology, 1st Medical Department, Charles University in Prague, Prague, Czech Republic;
¹⁰Würzburg University Medical Center, Würzburg, Germany; ¹¹University Hospital Brno, Brno, Czech Republic; ¹²Andrew Love Cancer Centre, Geelong, Australia; ¹³University of Chicago Medical Center, Chicago, IL, USA; ¹⁴Genmab A/S, Copenhagen, Denmark; ¹⁵Janssen Research & Development, Raritan, NJ, USA; ¹⁶Janssen Research & Development, Spring House, PA, USA; ¹⁷"Seràgnoli" Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.

Background: Elderly MM Population

- The median age at diagnosis of MM is approximately 70 years, and 35 to 40% of patients are >75 years of age¹
- Elderly patients often have low performance status, increased comorbidities, and reduced organ function, affecting their ability to tolerate MM treatment or participate in clinical trials²
 - In practice, patients with NDMM who are ≥70 years of age or have significant comorbidities are usually ineligible for ASCT³
 - VMP is a standard of care for elderly patients who are not eligible for ASCT
- Subgroup analyses of clinical trial data are needed for elderly patients with MM, especially those >75 years of age

MM, multiple myeloma; NDMM, newly diagnosed multiple myeloma; ASCT, autologous stem cell transplantation; VMP, bortezomib/melphalan/prednisone.

^{1.} Zweegman S, et al. Haematologica. 2014;99(7):1133-1137.

Madan S, Kumar S. Therapy. 2011;8(4):415-429.

^{3.} Moreau P, et al. Ann Oncol. 2017;28(suppl 4):iv52-iv61.

Background: Daratumumab

Daratumumab

- Human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory mechanism of action
- Approved
 - As monotherapy and in combination with standard of care regimens in RRMM in many countries
 - In combination with bortezomib, melphalan, and prednisone in non-transplant NDMM (United States, Brazil, etc.)
- Efficacy
 - Daratumumab-based combinations reduce risk of progression or death and induce rapid, deep, and durable responses in RRMM and NDMM¹⁰⁻¹²

CDC, complement-dependent cytotoxicity; ADCC, antibody-dependent cellular cytotoxicity; NK, natural killer; ADCP, antibody-dependent cellular phagocytosis; RRMM, relapsed/refractory multiple myeloma. 1. DARZALEX US PI; 2018. 2. Liszewski MK, et al. *Adv Immunol.* 1996;61:201-283. 3. Debets JM, et al. *J Immunol.* 1988;141(4):1197-1201. 4. Overdijk MB, et al. *mABs.* 2015;7(2):311-321. 5. Lokhorst HM, et al. *N Engl J Med.* 2015;373(13):1207-1219. 6. Plesner T, et al. *Blood.* 2012;120:73. 7. Krejcik J, et al. *Blood.* 2016;128(3):384-394. 8. Adams H, et al. Poster presented at: ASH; December 3-6, 2016; San Diego, CA. 10. Palumbo A, et al. *N Engl J Med.* 2016;375(8):754-766. 11. Dimopoulos MA, et al. *N Engl J Med.* 2016;375(14):1319-1331. 12. Mateos MV, et al. *N Engl J Med.* 2018;378:518-528.

ALCYONE: Study Design

ECOG, Eastern Cooperative Oncology Group; ISS, International Staging System; SC, subcutaneously; PO, orally; D, daratumumab; IV, intravenously; PD, progressive disease; PFS, progression-free survival; ORR, overall response rate; VGPR, very good partial response; CR, complete response; MRD, minimal residual disease; NGS, next-generation sequencing; OS, overall survival. ^{a8}-month PFS improvement over 21-month median PFS of VMP.

Progression-free Survival in the ITT Population

Median duration of follow-up: 16.5 months (range: 0.1-28.1)

<u>Median PFS not reached for D-VMP versus 18.1 months for VMP;</u> 50% reduction in the risk of progression or death for D-VMP versus VMP

ITT, intent-to-treat; HR, hazard ratio; CI, confidence interval. ^aKaplan-Meier estimate. Mateos MV, et al. *N Engl J Med*. 2018;378(6):518-528.

Demographics and Baseline Characteristics

	≥75 y	vears	<75 years		
	D-VMP (n = 104)	VMP (n = 107)	D-VMP (n = 246)	VMP (n = 249)	
Age Median (range), years	78 (75-93)	77 (75-91)	69 (40-74)	69 (50-74)	
Male, %	43	47	47	47	
ECOG status, ^a % 0 1 2	31 46 23	30 46 24	19 55 27	27 50 23	
ISS stage, ^b % I II	14 45	14 48	22 37	21 44	
	41	38	40	35	
Cytogenetic profile^c N Standard risk, % High risk, %	93 80 20	90 88 12	221 85 15	212 84 16	

^aECOG performance status is scored on a scale from 0 to 5, with 0 indicating no symptoms and higher scores indicating increasing disability.

^bBased on the combination of serum β2-microglobulin and albumin.

Based on fluorescence in situ hybridization/karyotype testing performed at local sites; t(4;14), t(14;16), and del17p were classified as high risk.

Patient Disposition

		≥75 years		<75 years			
	VMP ^a (n = 106)	D-VMP ^a (n = 102)		VMP ^a (n = 248)	D-VMP ^a (n = 244)		
	Cycles 1-9	Cycles 1-9	Cycles 10+	Cycles 1-9	Cycles 1-9	Cycles 10+	
Patients who discontinued study treatment, n (%)	45 (43)	29 (28)	8 (8)	72 (29)	38 (16)	25 (10)	
Reason for discontinuation, n (%)							
Progressive disease	13 (12)	4 (4)	6 (6)	34 (14)	19 (8)	24 (10)	
Adverse event	17 (16)	8 (8)	0	16 (7)	9 (4)	0	
Death	2 (2)	4 (4)	1 (1)	6 (2)	7 (3)	1 (<1)	
Noncompliance with study drug	9 (9)	9 (9)	1 (1)	6 (2)	1 (<1)	0	
Physician decision	2 (2)	0	0	5 (2)	0	0	
Withdrawal by patient	2 (2)	1 (1)	0	4 (2)	1 (<1)	0	
Other	0	3 (3)	0	1 (<1)	1 (<1)	0	

By end of Cycle 9, more VMP-treated patients discontinued treatment compared with D-VMP-treated patients in both age groups

Bortezomib Exposure

	≥75 years		<75 years	
	D-VMP	VMP	D-VMP	VMP
	(n = 102)	(n = 106)	(n = 244)	(n = 248)
Patients who completed 9 planned cycles of treatment, n (%)	74 (73)	55 (52)	202 (83)	165 (67)
Median (range) cumulative dose of bortezomib received, mg/m ²	43.1	34.1	48.6	46.2
	(1.3-53.2)	(3.9-53.6)	(1.3-55.3)	(2.6-55.0)
Median (range) relative bortezomib dose intensity, %	88.3	85.6	96.9	95.7
	(12.1-102.3)	(36.5-110.6)	(26.8-106.3)	(26.2-105.8)

Median cumulative bortezomib exposure reflects proportion of patients completing 9 VMP cycles

Efficacy: Progression-free Survival

Median duration of follow-up: 16.5 months (range: 0.1-28.1)

D-VMP reduced the risk of progression or death by 47% in the ≥75 years age group and 51% in the <75 years age group

Efficacy: Overall Response Rate

D-VMP induced deeper responses (≥2-fold higher rates of sCR) regardless of age

PR, partial response; sCR, stringent complete response. ^aP <0.0001 for D-VMP vs VMP. ^bP = 0.0085 for D-VMP vs VMP.

Efficacy: MRD-negative Rates (10⁻⁵)^a

D-VMP induced ≥3-fold higher rates of MRD negativity regardless of age

Most Common (≥25%) TEAEs

	Overall population ^a		≥75 yearsª		<75 years ^a	
All-grade TEAEs	D-VMP (n = 346)	VMP (n = 354)	D-VMP (n = 102)	VMP (n = 106)	D-VMP (n = 244)	VMP (n = 248)
Most common (≥25%) TEAEs, %						
Neutropenia	50	53	62	55	45	52
Thrombocytopenia	49	54	65	59	42	51
Anemia	28	38	36	42	25	36
URTI	26	14	28	15	26	13
Diarrhea	24	25	30	33	21	21
Pyrexia	23	21	31	20	20	21
Nausea	21	22	26	30	19	18
Peripheral sensory neuropathy, %	28	34	24	40	30	32
Infections, ^b %	67	48	73	52	64	46

TEAE, treatment-emergent adverse event; URTI, upper respiratory tract infection; MedDRA, Medical Dictionary for Regulatory Activities. ^aSafety population, which includes all patients who received ≥1 dose of study treatment. ^bMedDRA system organ class.

Most Common (≥10%) Grade 3/4 TEAEs

	Overall population ^a		≥75 yearsª		<75 years ^a	
Grade 3/4 TEAEs	D-VMP (n = 346)	VMP (n = 354)	D-VMP (n = 102)	VMP (n = 106)	D-VMP (n = 244)	VMP (n = 248)
Patients with grade 3/4 TEAE, %	78	77	89	85	73	74
Most common (≥10%) TEAEs, %						
Neutropenia	40	39	52	42	35	38
Thrombocytopenia	34	38	51	43	28	35
Anemia	16	20	24	23	13	19
Pneumonia	11	4	18	9	9	2
Leukopenia	8	9	13	9	6	9
Lymphopenia	8	6	10	10	7	4
Peripheral sensory neuropathy, %	1	4	0	6	2	3
Infections, ^b %	23	15	28	20	21	13

Peripheral sensory neuropathy and infection rates were consistent with overall population

Additional Safety Findings

	≥75 years		<75 years	
	D-VMP (n = 102)	VMP (n = 106)	D-VMP (n = 244)	VMP (n = 248)
Patients who discontinued treatment due to TEAEs, %	8	16	4	6
Patients with IRRs, % Grade 3/4	36 9	-	24 3	-
Patients with SPMs, %	6	2	<1	3

Most IRRs occurred during the first infusion

• Low rates of discontinuation due to TEAEs with D-VMP in both age groups

• SPM rate for ≥75 years subgroup is consistent with other daratumumab studies

Conclusions

- Efficacy of D-VMP in patients aged ≥75 years of age was consistent with the ITT population
 - D-VMP reduced the risk of progression or death by 47% and 51% in patients aged ≥75 years and <75 years, respectively
 - D-VMP induced deeper responses (2-fold increase in sCR rates) and higher rates of MRD negativity (≥3-fold higher) at a 10⁻⁵ sensitivity threshold
- First randomized phase 3 study to demonstrate MRD negativity in NDMM patients ≥75 years of age
- D-VMP had acceptable tolerability, regardless of age
 - No new safety signals were observed
 - Grade 3/4 infection rates were consistent with those observed in the overall population
 - Grade 3/4 peripheral sensory neuropathy remained low with D-VMP across age groups

Combining daratumumab with VMP provides significant clinical benefit, regardless of age

Acknowledgments

Patients who participated in these studies

ALCYONE 25 countries

- Staff members at the study sites
- Data and safety monitoring committee
- Staff members involved in data collection and analyses

