Efficacy of Daratumumab, Lenalidomide, and Dexamethasone Versus Lenalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma Patients With 1 to 3 Prior Lines of Therapy: Updated Analysis of POLLUX

Saad Z. Usmani,¹ Meletios A. Dimopoulos,² Andrew Belch,³ Darrell White,⁴ Lotfi Benboubker,⁵ Gordon Cook,⁶ Merav Leiba,⁷ James Morton,⁸ P. Joy Ho,⁹ Kihyun Kim,¹⁰ Naoki Takezako,¹¹ Nushmia Z. Khokhar,¹² Mary Guckert,¹² Kaida Wu,¹² Xiang Qin,¹² Tineke Casneuf,¹³ Christopher Chiu,¹² A. Kate Sasser,¹² Jesus San-Miguel¹⁴

¹Levine Cancer Institute/Carolinas HealthCare System, Charlotte, NC, USA; ²National and Kapodistrian University of Athens, Athens, Greece; ³Department of Oncology, University of Alberta Cross Cancer Institute, Edmonton, Alberta, Canada; ⁴QEII Health Sciences Center, Dalhousie University, Halifax, Nova Scotia, Canada; ⁵Service d'Hématologie et Thérapie Cellulaire, Hôpital Bretonneau, Centre Hospitalier Régional Universitaire (CHRU), Tours, France; ⁶St James's Institute of Oncology, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, UK; ⁷Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; ⁸Icon Cancer Care, South Brisbane, QLD, Australia; ⁹Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; ¹⁰Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ¹¹Department of Hematology, National Hospital Organization Disaster Medical Center of Japan, Tachikawa, Japan; ¹²Janssen Research & Development, LLC, Spring House, PA, USA; ¹³Janssen Research & Development, Beerse, Belgium; ¹⁴Clínica Universidad de Navarra-CIMA, IDISNA, Pamplona, Spain.

ClinicalTrials.gov Identifier: NCT02076009

Background

Daratumumab

- Human monoclonal antibody targeting CD38
- Direct on-tumor and immunomodulatory MoA¹⁻⁵

Approved

- As monotherapy for heavily pretreated RRMM by the FDA, EMA, Health Canada, Mexico, and Singapore
- Combo with standard of care regimens for RRMM after ≥1 prior therapy (POLLUX and CASTOR) by the FDA
- Early studies demonstrated efficacy of daratumumab
 - Rapid, deep, and durable responses
 - Well tolerated with manageable adverse events

MoA, mechanism of action; RRMM, relapsed or refractory multiple myeloma; FDA, Food and Drug Administration; EMA, European Medicines Agency; CDC, complement-mediated cytotoxicity; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis.

1. Lammerts van Bueren J, et al. *Blood*. 2014;124. Abstract 3474.

- 2. Overdijk MB, et al. *J Immunol*. 2016;197(3):807-813.
- 3. de Weers M, et al. J Immunol. 2011;186(3):1840-1848.
- 4. Overdijk MB, et al. MAbs. 2015;7(2):311-321.
- 5. Krejcik J, et al. *Blood*. 2016;128(3):384-394.

Study Design

Multicenter, randomized (1:1), open-label, active-controlled, phase 3 study

• Prior lenalidomide

Pre-medication for the DRd treatment group consisted of dexamethasone 20 mg,^a acetaminophen, and an antihistamine

ISS, international staging system; DRd, daratumumab/lenalidomide/dexamethasone; IV, intravenous; qw, weekly; q2w, every 2 weeks; q4w, every 4 weeks; PD, progressive disease; R, lenalidomide; PO, oral; d, dexamethasone; Rd, lenalidomide/dexamethasone; PFS, progression-free survival; TTP, time to progression; OS, overall survival; ORR, overall response rate; VGPR, very good partial response; CR, complete response; MRD, minimal residual disease. ^aOn daratumumab dosing days, dexamethasone 20 mg was administered as pre-medication on Day 1 and Day 2.

Baseline Demographic and Clinical Characteristics

Characteristic	DRd	Rd (n = 283)	Characteristic	DRd (n = 286)	Rd (n = 283)
Age, y Median (range) ≥75, %	65 (34-89) 10	65 (42-87) 12	Prior lines of therapy, % Median (range) 1	1 (1-11) 52	1 (1-8) 52
ISS stage, % ^a I II III	48 33 20	50 30 20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		28 13 7 93
Median (range) time from diagnosis, y	3.48 (0.4-27.0)	3.95 (0.4-21.7)	Prior ASCT, %	63	64
Creatinine clearance (mL/min), % N 279 >30-60 28 >60 71		281 23 77	Prior bortezomib, %	86 84	86 84
	279 28 71		Prior IMiD, % Prior lenalidomide, %	55 18	55 18
Cytogenetic profile, (%) ^b N Standard risk High risk	161 83 17	150 75 25	Prior PI + IMiD, %	44	44
			Refractory to bortezomib, %	21	21
			Refractory to last line of therapy, %	28	27

ASCT, autologous stem cell transplantation; PI, proteasome inhibitor; IMiD, immunomodulatory drug.

 ^{a}ISS staging is derived based on the combination of serum $\beta2\text{-microglobulin}$ and albumin.

^bCentral next-generation sequencing. High-risk patients had any of t(4;14), t(14;16), or del17p. Standard-risk patients had an absence of high-risk abnormalities. •Exploratory.

Updated Efficacy

Median (range) follow-up: 17.3 (0-24.5) months

Responses continue to deepen in the DRd group with longer follow-up

HR, hazard ratio; CI, confidence interval; sCR, stringent complete response; PR, partial response. Note: PFS = ITT population; ORR = response-evaluable population. ^aKaplan-Meier estimate; ^bP <0.0001 for DRd vs Rd.

MRD-negative Rate

MRD-negative rates were >3-fold higher at all thresholds

PFS: MRD Status (10⁻⁵)

MRD negativity is associated with better outcomes

Time From Last Line of Therapy to Study Treatment of > or ≤12 Months

>12 Months

≤12 Months

DRd is superior to Rd regardless of time since last therapy

Refractory to Last Line of Therapy

DRd benefits patients refractory to last line of therapy

^aKaplan-Meier estimate. ^bResponse-evaluable population. ^c*P* <0.0001 for DRd vs Rd.

PFS: Cytogenetic Risk in All Evaluable Patients^a

DRd improves outcomes regardless of cytogenetic risk

NR, not reached; NS, not significant.

aITT/Biomarker risk-evaluable analysis set. High-risk patients had any of t(4;14), t(14;16), or del17p. Standard-risk patients had an absence of high-risk abnormalities.

Curves are beginning to separate, but OS data are immature

Summary of Efficacy Results: 1 to 3 Prior Lines Subgroup

	DRd	Rd
PFS Median, mo HR (95% CI)	NRª 0.36 (0.26-0.49)	18.4 —
ORR, % ≥CR, % ≥VGPR, %	94ª 47ª 78ª	78 20 46
MRD-negative rates, % 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶	32ª 25ª 12ª	9 6 3
Time from last line of tx to study tx: >12 months Median, mo PFS HR (95% CI) ORR, %	NR 0.38 (0.23-0.63)ª 94 ^b	NR - 84
Time from last line of tx to study tx: ≤12 months Median, mo PFS HR (95% CI) ORR, %	NR 0.35 (0.23-0.53)ª 90ª	10.3 _ 66
Refractory to last line of therapy Median, mo PFS HR (95% CI) ORR, %	NR 0.45 (0.27-0.74) ^b 89 ^b	8.8 - 63
OS HR (95% CI)	0.69 (0.46-1.05)	_

Most Common AEs (All Patients): Updated Analysis

	DRd (n	= 283)	Rd (n = 281)	
Hematologic, %	All grade ≥25%ª	Grade 3/4 ≥5%ª	All grade ≥25%ª	Grade 3/4 ≥5%ª
Neutropenia Febrile neutropenia	60 6	53 6	44 3	38 3
Anemia	34	14	36	21
Thrombocytopenia	28	13	30	15
Lymphopenia	6	5	5	4
Nonhematologic, %				
Diarrhea	47	6	28	3
Fatigue	35	6	29	3
Upper respiratory tract infection	33	1	23	1
Cough	30	0	13	0
Constipation	30	1	26	0.7
Muscle spasms	27	0.7	20	2
Nasopharyngitis	26	0	17	0
Nausea	25	1	16	0.4
Pneumonia	16	9	13	8

No new safety signals reported

Conclusions

- DRd significantly improved outcomes for patients with myeloma
 - 63% reduction in risk of progression or death for DRd versus Rd
 - Similar findings observed across all analyses in the 1 to 3 prior lines population
- More patients achieve deeper responses including MRD negativity with DRd
- DRd is superior to Rd regardless of time since last therapy, refractoriness to last line of therapy, or cytogenetic risk
- Safety profile remains unchanged

These data support the use of DRd for patients who received ≥1 prior therapy regardless of risk status or refractoriness to prior treatment

Acknowledgments

- Patients who participated in this study
- Investigators
- Data and safety monitoring committee
- Staff members involved in data collection and analyses
 - David Soong and Christopher Velas

18 countries

- This study was funded by Janssen Research & Development, LLC
- Medical writing and editorial support were provided by Jason Jung, PhD, of MedErgy, and were funded by Janssen Global Services, LLC